
PROBABILISTIC GENOMES FOR GENETIC

PROGRAMMING

Submitted to the Department of Computer Science of Amherst College

in partial fulfillment of the requirements

for the degree of Bachelor of Arts with honors

April 12, 2023

Author: David Dang Advisor: Prof. Lee Spector

Copyright © 2023 David Dang

Abstract

Genetic programming (GP) is a problem-solving method inspired by biological evolution that generates
computer programs to solve problems using variation and selection. In most GP systems, the smallest
amount of variation made to a program is the addition or removal of an instruction, which often causes
a large impact on how the program behaves. In this thesis, we explore the idea of allowing even smaller
changes to programs by associating these instructions with probabilities. As a result, rather than an in-
struction being added or deleted, its probability of being included in the program can be adjusted by a
small amount. We implement this idea in the PushGP genetic programming system by developing a prob-
abilistic genome representation. We show that, in some cases, the use of probabilistic genomes improves
the solving power of a GP system.

ii

Acknowledgements

I would like to thank Professor Spector for his help on this thesis and for originating the idea of Probabilistic
Plushy genomes. I was able to learn more about genetic programming and ultimately come up with the
biased-perturbation mutation method through our engaging discussions. I enjoyed working together to
develop the other parts of the thesis.

I greatly appreciate the help of Ryan Boldi for recommending me the benchmark problems I used in
my experiments and the rest of the Push lab for suggesting new ideas for me to explore in my study of
Probabilistic Plushies.

Finally, I want to thank my family and Amherst classmates for their support throughout this endeavor.
They motivated me to continue to push through and complete this thesis. I am very fortunate to have
these people in my life.

iii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 What is Genetic Programming? . 4

1.2.1 Automatic Programming . 4
1.2.2 How Genetic Programming Works . 5
1.2.3 Genetic Representation of Computer Programs . 7
1.2.4 Setup and Problem Specification . 8

1.3 Probabilistic Genomes for Genetic Programming . 9
1.3.1 Motivation . 9
1.3.2 Probabilistic Genomes . 10
1.3.3 Error Evaluation . 11
1.3.4 Variation Methods . 11

1.4 Research Objectives . 13
1.5 Related Works . 13

1.5.1 Probabilistic Incremental Program Evolution: Stochastic Search Through Program Space . 13
1.5.2 Probabilistic Grammatical Evolution . 14

2 Design and Implementations 16
2.1 Software Implementation . 16

2.1.1 Introduction to Propeller . 16
2.1.2 The Push Programming Language . 17
2.1.3 Plushy Genomes . 18

2.2 Genetic Operators . 19
2.2.1 Selection . 19
2.2.2 Variation . 20

2.3 Probabilistic Plushy genomes . 20
2.4 Multiple Evaluations . 21
2.5 New Genetic Operators . 23

2.5.1 UMAD . 23
2.5.2 Biased-perturbation mutation . 23

2.6 Data Collection . 25
2.6.1 Benchmark Problems . 25
2.6.2 Experimental Design . 26

iv

3 Results 32
3.1 Preliminary Experimentation . 32
3.2 Genetic Sources . 36

3.2.1 Hand-tuned . 36
3.2.2 Kitchen-Sink . 39

4 Limitations and Future Work 43
4.1 Crossover . 43
4.2 Hyperparameter Tuning . 43
4.3 Benchmark Problems . 44

5 Conclusions 46

6 Appendix: Genetic Sources 47
6.1 Preliminary Experimentation . 47
6.2 Genetic Sources . 47

6.2.1 Hand-tuned . 47
6.2.2 Kitchen-Sink . 48

v

Chapter 1

Introduction

1.1 Overview

Genetic programming (GP) is a population-based method inspired by biological evolution that generates

computer programs to solve problems using evolutionary concepts such as variation and selection. For a

GP system to run, a human user must input some problem, often specified in terms of a goal and a set of

constraints, for the system to solve. Once the system receives a problem as input, it will begin the evo-

lutionary process by initializing a random population of computer programs. After that, each computer

program in the population is evaluated based on its ability to solve the specified problem according to

the provided goal and set of constraints. If the GP system finds a program in the population that solves

the problem from its evaluation process, then it will output that program for the human user. Otherwise,

a select few of the computer programs that have the potential to solve the problem are chosen from the

population to reproduce and create new computer programs. The system will group these child programs

to form a new population and have them repeat the evolutionary process. This cycle continues until a GP

system either finds a solution program or halts after meeting an iteration limit.

A common issue in genetic programming is the process of creating new programs from selected in-

dividuals in the population. More specifically, the variation methods a GP system uses on a computer

program often create child computer programs that behave much differently from their parent program.

In most GP systems, the smallest amount of variation to a program is an addition or removal of a gene

1

instruction. Even this degree of change can greatly impact a program’s behavior. As a result, if a computer

program has certain semantics that helps it solve a given problem, there is a chance that new programs

created from it will not possess this behavior. Because of this loss of behavioral continuity, GP systems

can suffer in performance when solving problems, especially ones that require many iterations to evolve

programs.

In this thesis, we explore the idea of allowing even smaller changes to programs by associating in-

structions with probabilities. Thus, rather than a computer program’s instruction being added or deleted,

the instruction’s probability of being included in the program can be adjusted by a small amount. With

this new variation method, a computer program can pass down aspects of its behavior to its child pro-

gram, allowing the two programs to share similar semantics. We reason this effect of variation allows GP

systems to maintain valuable behavioral traits within the population, improving their ability to search for

programs that are capable of solving the given problem.

We implemented this idea in a PushGP genetic programming system by developing a probabilis-

tic genome representation for computer programs that associated each instruction with a probability.

These probabilistic genomes can use these probabilities to express their instructions and generate non-

probabilistic genomes. Since we introduced a new genome into the system, we also had to create an error

evaluation process for these genomes to help us better gauge their ability to solve the specified problem.

We designed an evaluation process where a probabilistic genome expressed multiple non-probabilistic

genomes. The method would then select the best non-probabilistic genome from the expressed genomes

to represent the probabilistic genome’s problem-solving capabilities. Additionally, we added other vari-

ation methods and constructed them to be compatible with probabilistic genomes. Finally, we included

our new variation method that targets the probabilities of probabilistic genomes to maintain behavioral

similarity between parent and child genomes.

We ran an initial experiment to analyze the GP system’s performance using these settings. More specif-

ically, we began with a preliminary experiment that measured the success rates of the GP system on float

regression benchmark problems when given non-probabilistic run parameters versus probabilistic run pa-

rameters. Each of the run parameters used a different type of genome, error evaluation process, and set of

variation methods. Our first set of runs helped to determine if the probabilistic settings could help the GP

2

system perform better than itself when using the non-probabilities settings. After our initial testing, we

repeated the non-probabilistic runs with the additional requirement of increasing the parameters in the

non-probabilistic run parameters to equalize the total number of error evaluations to the same amount in

the probabilistic run parameters.

We found from our first set of runs that the GP system had a higher rate of success when using the

probabilistic run parameters than the non-probabilistic run parameters across the entire benchmark suite.

According to our comparison of the success rates between the probabilistic and non-probabilistic runs, the

probabilistic runs performed about the same or better than the non-probabilistic runs. After standardizing

the total number of evaluations for the non-probabilistic settings, we observed that the non-probabilistic

runs had better success rates than the probabilistic runs on many of the float regression problems. When

totaling the number of successes across the benchmark suite for the probabilistic and non-probabilistic

runs, however, we found that the success rate of the probabilistic runs was greater than the success rate

of the non-probabilistic runs over all the benchmark problems. These preliminary results show that while

probabilistic genomes can improve a GP system’s success rate on a given problem, it is still unclear if we

can generalize this increase in performance when we provide non-probabilistic and probabilistic runs with

the same total number of error evaluations.

We then moved to study how the GP system with probabilistic settings would perform given different

genetic sources. A genetic source is the set of instructions specified to the GP system that it uses to gen-

erate computer programs to solve a given problem. A GP system’s performance is known to suffer when

provided with a more general genetic source consisting of instructions for different data types. Given such

genetic sources, we reason that a GP system with probabilistic settings could have a better performance

on a benchmark suite than when using non-probabilistic settings. As such, we created an “everything but

the kitchen-sink”, or kitchen-sink, instruction set and a hand-tuned instruction set for our float regression

benchmark problems. These genetic sources were inspired by Helmuth, Pantridge, Woolson, and Spec-

tor’s paper on “Genetic Source Sensitivity and Transfer Learning in Genetic Programming”. For each genetic

source, we ran an experiment that compared the success rates of the GP system on benchmark problems

using different non-probabilistic and probabilistic run parameters. We hypothesized that the probabilistic

runs would have a higher success rate than the non-probabilistic runs on the kitchen-sink instruction set.

3

We found that the non-probabilistic runs had better success rates than the probabilistic runs on the

hand-tuned genetic source. Our GP system had its best performance on the benchmark suite when we

specified the non-probabilistic run parameters with additional error evaluations. Regarding our runs us-

ing the kitchen-sink instruction set, both non-probabilistic and probabilistic runs suffered in performance,

with the non-probabilistic having the bigger dropoff in success rate. We found that certain probabilistic

run parameters allowed our GP system to outperform itself using non-probabilistic settings on some of

our benchmark problems.

In the remainder of this thesis, we will begin with an in-depth introduction to genetic programming.

We will then further discuss the motivation of the thesis and provide a general description of our con-

tributions to fulfill our research objectives. After that, we will transition to a brief literature review of

previous work with probabilistic genomes. The next chapter then describes our software implementation

and a detailed explanation of our probabilistic configurations to a PushGP genetic programming system.

We will then explain the experiments we performed and our findings from the results we obtained from

our experimentation. We conclude with a chapter on possible future work and a summary of the overall

thesis.

1.2 What is Genetic Programming?

1.2.1 Automatic Programming

Automatic programming is a type of computer programming in which some system or software generates

programs based on certain specifications defined by human programmers. To concisely put it, automatic

programming produces code designed to write code. Automatic programming is a branch of artificial

intelligence that provides many useful applications, including generative programming and source code

generation.

An important utilization of automatic programming is its effectiveness in solving problems that do

not have a known solution. Hand-written code is often a flawed approach to figuring out such problems

due to the error-prone nature of programming and the lack of information human programmers require

to develop a solution. With automatic programming, however, human programmers can specify goals and

4

constraints at a higher level of abstraction that allows them to generate programs possessing their desired

features. Automatic programming helps human programmers ignore implementation details by allowing

human users to describe general guidelines of a problem so that the computer can find possible solutions

for them.

One of the main approaches to automatic programming is genetic programming (GP), an evolutionary

algorithm that generates computer programs capable of creating other programs using biological princi-

ples. Genetic programming draws inspiration from Darwinian evolution, where organisms survive, adapt,

and evolve through natural selection. Genetic programming incorporates these principles into its algo-

rithms to find solutions to problems that human programmers struggle to solve. The flexible and adaptive

program structure of genetic programming allows such algorithms to solve problems from different do-

mains. Genetic programming has been a successful automatic programming tool, contributing to many

practical areas of computer science, such as code synthesis and automatic bug-fixing.

1.2.2 How Genetic Programming Works

Genetic programming algorithms are a type of evolutionary algorithm, meaning they utilize evolution

as the main factor when deciding how to traverse the solution space. Unlike the solution space of other

evolutionary algorithms, genetic programming algorithms aim to search for computer programs that can

solve a given problem. A genetic programming algorithm begins by initializing a random population of

computer programs. After that, the algorithm continuously improves the population by selecting the set of

programs with the lowest errors in the population and reproducing child programs using variation meth-

ods. A genetic programming run is a success if it finds a computer program within the population that

solves the given problem.

A genetic programming system starts by creating a defined number of randomly-generated candidate

solutions, also known as “individuals”, that form a population. Each candidate solution is a computer pro-

gram derived from a specified genetic source. A genetic source is a list of functions and constants a human

programmer inputs into a GP system to allow it to generate computer programs that consist of these in-

structions. Often, human programmers will include instructions in the genetic source that are relevant to

the problem they want to solve.

5

Once a GP system constructs an initial population, it will then evaluate each individual in the popula-

tion to measure their errors. For the error evaluation phase to work, the human programmer must specify

an objective function, training set, and testing set to determine the errors of each candidate solution. An

individual’s errors help to gauge how useful an individual will be in solving the given problem. A com-

puter program with a low total error means that it is a good solution for the problem and is more likely

to produce child programs that can lead to better solutions. Similar to the natural selection processes in

biological evolution, the genetic programming system will select the individuals in the population with

lower errors to reproduce in the variation phase.

Instead of total error, many resources on genetic programming often use “fitness” to denote a computer

program’s ability to solve a defined problem. Both of these values serve to help GP systems compare com-

puter programs within the population and select the better ones to create child programs throughout the

genetic programming run. In context to a specified problem, however, total error and fitness are opposites

of each other in that one goes up while the other goes down. We will focus more on a computer program’s

errors as it is more relevant to our methods and experiments.

Once the candidate solutions in the population with lower errors are selected to reproduce, the vari-

ation phase begins, where the system generates new programs using crossover and mutation methods.

Thesemethods, commonly known as genetic operators, are analogous to the crossover andmutationmech-

anisms performed in biological evolution. In crossover, the GP algorithm will choose two individuals as

the parents and combine some amount of each individual’s genetic information to form a new candidate

solution that represents the child of the parents. With mutation, an individual is chosen as the parent and

has one or more of the individual’s gene instructions perturbed to produce a child program. Although

crossover is an important genetic operator to solve GP problems, our investigation will focus primarily on

the mutation side of variation.

During the reproductive process, the genetic programming system performs a combination of these

genetic operators on the chosen candidate solutions of the current population to create new individuals

to form the new population. The idea behind this process is that individuals with low errors contain de-

sirable genetic material. As a result, selecting these individuals to produce new programs allows them to

pass these traits on to their child programs. Additionally, variations methods can introduce new genes to

6

the child programs to create a more diverse set of candidate solutions. By forming a new population built

from the errors of the previous generation and adding new instructions into the gene pool, the system can

create individuals with lower errors than their parent programs.

After the genetic programming system finishes the reproductive process, the evolution cycle repeats,

starting with the error evaluation of each candidate solution in the new population. GP systems continue

this sequence of error evaluation, selection, and variation until there either exists a computer program

with a total error that satisfies the human programmer’s specifications or when the system reaches an

iteration limit.

As such, the error evaluation stage helps a GP system determine a candidate solution’s ability to solve

the given problem and select the candidate solutions that contain valuable genetic material. The variation

phase allows the system to explore the solution space by passing this genetic information onto child pro-

grams and diversifying these programs to form a new population. By repeatedly executing these stages,

genetic programming systems can optimize the population to generate a computer program that solves the

specified problem. This process of evolution is analogous to how heuristics are used in search algorithms,

as the objective function represents the set of constraints to a problem, and the genetic programming

systems help candidate solutions approach a global optimum that satisfies these constraints.

1.2.3 Genetic Representation of Computer Programs

Many genetic programming systems utilize an encoding process to represent computer programs to help

with the evolutionary process. The goal behind this approach is to allow GP systems to maintain a com-

puter program’s actual behavior while also being able to manipulate these programs and generate new

ones. As a result, many GP systems will often focus on evolving the genetic representation of a computer

program rather than the program itself. Since a program’s genetic representation is not executable, these

systems use the encoding process to map them back to a program to measure its errors on a given prob-

lem. One example of an encoding scheme is in Tree-Based GP, where syntax trees, binary trees with their

internal nodes as functions and their leaf nodes as variables and constants, represent computer programs.

7

1.2.4 Setup and Problem Specification

Formally, genetic programming is a systematic, domain-independent method that requires a high-level

statement to initiate the process of generating candidate solutions (Langdon, Poli, McPhee, and Koza 2008).

Before running a genetic programming system, a human user needs to define the following specifications

for a given problem:

1. genetic source;

2. objective function and training set;

3. set of run parameters;

4. termination criterion.

Genetic Source

The genetic source or instruction set is the set of instructions that can appear in a computer program,

which can consist of:

1. external inputs that a computer program uses as arguments;

2. zero-argument functions (e.g. a function that returns a random number);

3. multi-argument functions (e.g. a function that returns the sum of two numbers)

4. constants (e.g. numbers, strings, or boolean values) that are either pre-specified or randomly generated

when a new computer program is constructed.

GP problems are often domain-specific and constrained, and as a result, human programmers must

provide a genetic source to help GP systems search within the appropriate solution space. This instruction

set represents the possible blocks of code that can appear in a computer program. Genetic programming

systems use the instructions from the genetic source to create candidate solutions throughout the evolu-

tionary process.

Objective Function And Training Set

The objective function and training set help assign a candidate solution with a set of errors when eval-

uated on the inputs of the training set. Often, a GP system determines a candidate solution’s errors by

assessing the individual’s output and the objective function’s output at each input in the training set. This

8

evaluation process allows genetic programming systems to compare two individuals using their respective

total errors. While the last two specifications define the search space, the objective function and training

set allow a genetic programming system to determine which regions of the search space it should focus

on investigating. As a result, these components implicitly define the GP system’s desired goal throughout

the search process and the constraints a candidate solution must satisfy. Human users may also specify a

testing set to provide additional test cases when measuring the errors of a solution program.

Set of Run Parameters

The set of run parameters specifies additional aspects of the genetic programming run, including the pop-

ulation size, the probabilities of executing each genetic operator, and the maximum size of a computer

program. A genetic programming system’s ability to solve a given problem can vary depending on the

provided set of run parameters. As a result, one must carefully consider the type of parameters and the

amount used for each parameter to maximize the GP system’s performance.

Termination Criterion

The termination criterion designates how the GP system will finish its run and output its results. Often,

a genetic programming system will terminate if it has found a candidate solution with a total error that

satisfies a defined error threshold. The system can also halt the genetic programming run if it does not

find a solution program in the population after a specified maximum number of iterations or generations.

Along with returning the computer program that solves the given problem, the GP systemmay also output

additional information, such as the number of generations to find the solution or an individual’s total error

on the testing set.

1.3 Probabilistic Genomes for Genetic Programming

1.3.1 Motivation

During the variation phase, it is often the case that the child programs behave much differently than their

parent programs. The smallest amount of variation to a program is an addition or deletion of a gene

9

instruction, and even this change to a candidate solution can largely impact the behavior of a program.

Because of this effect on a program’s semantics, a parent program is frequently unable to pass down its

characteristics to a child program. As a result, if a candidate solution’s behavior appears to be useful

in solving a given problem, there is a chance that new individuals created from it will not inherit these

behavioral traits, causing a loss of problem-solving power to the next generation of programs.

In this thesis, we explore the idea of creating a smaller effect of change by associating instructions with

probabilities. More specifically, we devise a new mutation method that targets an instruction’s probability

rather than the instruction itself. This variation method generates a child program that contains the same

sequence of instructions as their parent with slight differences in their instructions’ probabilities. As such,

this genetic operator allows a parent program and its child program to share similar semantics and thus

helps to move desirable features into the new population.

We develop a probabilistic genome representation of computer programs to implement such a variation

method. This genome would assign each gene instruction with a number representing the probability of

expressing the corresponding instruction into a non-probabilistic genome. As a result, this new genome

representation can map to multiple computer programs and thus requires a new approach to determining

its errors. We also implement our desired variationmethod that targets a genome’s probabilities to generate

child programs that behave similarly to their parent programs. Our investigation seeks to learn more about

how a GP system will perform with these new configurations.

1.3.2 Probabilistic Genomes

Our new encoding scheme assigns each gene instruction to a number within the interval [0,1]. We can use

these values to have a probabilistic genome generate a non-probabilistic genome. When aiming to express

a non-probabilistic candidate solution, each number in the probabilistic genome represents the probability

of adding the associated instruction into the non-probabilistic genome. Since a non-probabilistic genome

has a deterministic mapping to a computer program, a probabilistic genome can express itself to many

non-probabilistic genomes and, thus, map to more than one computer program. We created a probabilis-

tic genome called the Probabilistic Plushy based on the non-probabilistic genome representation of Push

programs called Plushies, which we further discuss in section 2.

10

1.3.3 Error Evaluation

Our error evaluation method relies on a probabilistic genome’s ability to map to different computer pro-

grams to measure its errors. More specifically, given a probabilistic genome as input, we express the

genome to a specified number of non-probabilistic genomes. After that, we perform the process used to

calculate the errors for non-probabilistic genomes by mapping each one to a computer program and run-

ning them on the training set. Once we obtain the errors of each non-probabilistic genome, we sum each

one to find the minimum total error within this list of numbers. We then assign the errors corresponding

with the determined minimum total error to our probabilistic genome to have it represent the genome’s

errors.

The intuition behind this approach was to determine how to reasonably search the lowest errors from

the set of non-probabilistic genomes expressed by a given probabilistic genome. By allowing a proba-

bilistic genome to generate a few non-probabilistic genomes and translating these genomes into computer

programs, we can obtain more information on which non-probabilistic genomes lead to lower errors. Ad-

ditionally, since a probabilistic genome ultimately results in the creation of a non-probabilistic genome, it

makes sense to associate the errors of this genome with the probabilistic genome.

Along with determining a probabilistic genome’s set of errors, we associate a non-probabilistic genome

with the probabilistic genome. More specifically, the non-probabilistic genome we assign is the one whose

errors we designated as the errors of the probabilistic genome. We perform this additional association

in the evaluation process to help our new variation method perturb the probabilities of a probabilistic

genome.

1.3.4 Variation Methods

We created a new mutation method that targets an instruction’s probability and results in a smaller ef-

fect of variation when producing a new probabilistic genome. This method, called biased-perturbation

mutation (BPM), works by tweaking the probabilities of a probabilistic genome based on the product of a

Gaussian noise factor and a specified standard deviation. The biased-perturbation mutation method uti-

lizes the non-probabilistic genome associated with the probabilistic genome to decide how to change a

gene instruction’s probability. More specifically, the method will sweep through each gene instruction

11

in the probabilistic genome and check if it appears in the non-probabilistic genome. If the probabilistic

genome expressed the instruction, then the instruction’s probability is more biased towards increasing.

On the other hand, the instructions not expressed in the non-probabilistic genome are more likely to have

their probabilities decrease. The resulting perturbation forms a new probabilistic genome consisting of the

same instructions as their parent genome with slight differences in each instruction’s probability.

We bias the amount of perturbation to an instruction’s probability based on whether or not it was ex-

pressed in the associated non-probabilistic genome because we deem these instructions important when

generating new probabilistic genomes with lower errors. Since the non-probabilistic genome we assign to

the probabilistic genome has the lowest errors out of the set of expressed non-probabilistic genomes in the

error evaluation process, we reason the instructions in the assigned genome can contribute to solving the

given problem more than any other instruction in the probabilistic genome. As a result, we want to in-

crease the likelihood of the probabilistic genome expressing these instructions while lowering the chance

of expressing the instructions that do not appear in the associated non-probabilistic genome. This logic

helps to generate new probabilistic genomes that are more biased in generating non-probabilistic genomes

with the same instructions as the ones in the associated non-probabilistic genome.

By changing a genome’s probabilities rather than its instructions, the biased-perturbation mutation

method allows a child probabilistic genome to share similar semantics with its parent genome. Because of

this smaller effect of variation, both genomes consist of the same sequence of instructions, allowing them

to express near identical sets of non-probabilistic genomes and computer programs. In addition, the mu-

tation method provides a probabilistic genome to pass down important behavioral traits to newly created

probabilistic genomes, as the child genomes are more likely to express non-probabilistic genomes with

lower total error. Over many generations, the biased-perturbation mutation method can provide proba-

bilistic genomes with enough information for GP systems to output a program that solves the specified

problem.

Besides the biased-perturbation mutation method, we also implemented other variation methods nor-

mally applied to non-probabilistic genomes into versions compatible with probabilistic genomes. The

only change required for these methods was to attach a probability to any new instruction being added to

a probabilistic genome so that the genome could express it into a non-probabilistic genome and allow its

12

probability to be tweaked when using the biased-perturbation mutation method.

1.4 Research Objectives

The main research question under investigation is if probabilistic genomes can help a GP system per-

form better on problems it struggles to solve when using non-probabilistic genomes. These probabilistic

genomes will allow us to create a genetic operator that manipulates a genome’s actual semantics rather

than its syntactic representation. By making small changes to the behavior of probabilistic genomes at

each generation, we hypothesize that a GP system can interpret semantic relations that it overlooks using

non-probabilistic genomes during evolution, thereby increasing the GP system’s solving capabilities. Our

investigation aims to compare a GP system’s performance given different non-probabilistic and probabilis-

tic settings based on objective measurements such as success rate.

Although there is a possibility that probabilistic genomes will help a GP system to solve previously

difficult problems, it could be that they do not improve and even worsen the system’s performance across

all GP problems. As a result, another goal of this project would be to identify possible limitations in our

experimentation and develop potential theoretical justifications from our empirical results. From our in-

vestigation, we would like to gain more insight into applying probabilistic genomes in a GP system and

their effectiveness in solving problems.

Additionally, we will present future research questions according to our findings. Our project ties

into current genetic programming research as most work focuses on developing new methods to increase

the performance of existing GP systems on various problems. As such, we would like to discuss possible

projects from our study of probabilistic genomes to help succeeding researchers explore more about these

genotypes and genetic operators that allow parent and child genomes to maintain behavioral similarity.

1.5 Related Works

1.5.1 Probabilistic Incremental Program Evolution: Stochastic Search Through Program Space

Salustowicz and Schmidhuber’s 1997 paper “Probabilistic Incremental Program Evolution: Stochastic Search

Through Program Space” presents Probabilistic Incremental Program Evolution (PIPE), a novel technique

13

for automatic program synthesis that combines a probability vector of program instructions to a tree-based

representation of programs to help it generate computer programs. PIPE relies on an n-ary called a Proba-

bilistic Prototype Tree (PPT) throughout the evolutionary process to help it traverse the search space and

create program trees. Each node in a PPT contains a random constant and probability vector that asso-

ciates a probability to each instruction in the specified genetic source.

To create solution programs, PIPE uses generation-based learning to evolve programs by improving

their fitness values. PIPE begins by initializing a PPT and generating a population of programs using the

probabilities from the PPT. After that, it measures the fitness of each program in the population and finds

the program with the best fitness value. Next, the prototype tree’s probabilities are modified such that the

PPT’s probability of generating the best program of the current generation increases. PIPE then performs

mutation on the PPT by finding the nodes that helped to create the current best solution and mutating

their probabilities by some probability. Finally, PIPE prunes the prototype at the end of each generation,

and the evolutionary cycle repeats once more.

The researchers compared PIPE to Koza’s GP variant on a function regression problem and the 6-bit

parity problem. They found that PIPE performed better on the 6-bit parity problem than GP. Additionally,

its best solutions to the function regression problem were better than GP’s best solutions.

The work in this thesis focuses on evolving a population of probabilistic genomes in a genetic program-

ming run. Additionally, we discuss a new error evaluation process for GP systems to gauge a probabilistic

genome’s solving power on a problem by evaluating the errors of the non-probabilistic genomes it can

express from its probabilities.

1.5.2 Probabilistic Grammatical Evolution

In their 2021 paper “Probabilistic Grammatical Evolution”, Megane, Lourenco, andMachado introduce Prob-

abilistic Grammatical Evolution (PGE) that introduces a new approach to representing computer programs

and a new mapping mechanism for Grammatical Evolution (GE), a GP variant. PGE utilizes a Probabilis-

tic Context-Free Grammar (PCFG), a Context-Free grammar with the additional set that associates each

production rule with a probability. The Probabilistic Grammatical Evolution uses the PCFG to map a geno-

type, a list of probabilities, to a computer program. PGE will then modify the probabilities of the PCFG

14

according to the fittest individuals produced.

More specifically, PGE begins by initializing a PCFG where all its derivation rules in the grammar have

the same chance of being selected. At each generation of the genetic programming run, the probabilities of

the PCFG are updated based on the number of times each derivation rule was chosen by the best individual

of the current generation or the best individual overall. A derivation rule’s probability will increase if used

to create one of the best individuals. Otherwise, its probability will decrease if not used in the individual’s

creation. This perturbation process allows PGE to generate high-fit individuals throughout the evolution-

ary process.

Their experimentation involved performing the PGE on two regression problems and comparing it

with GE and Structure Grammatical Evolution (SGE). They found that PGE performed better than GE and

had similar results to SGE on these problems.

In contrast to this work, our thesis utilizes a probabilistic genome that associates probabilities to each

instruction in the genome rather than assigning probabilities to derivation steps. Our work also presents a

new mutation method that increases the likelihood of perturbing a probabilistic genome’s probability up-

ward if the associated instruction helped generate the best non-probabilistic genome that the probabilistic

genome could express.

15

Chapter 2

Design and Implementations

2.1 Software Implementation

2.1.1 Introduction to Propeller

Propeller is a Push-based genetic programming system written in the Clojure programming language (a

JVM-based dynamic and functional dialect of Lisp). This GP system is often used in researching novel

genetic programming techniques due to its flexible design that allows human users to specify a wide range

of run parameters, such as population size and generation limit. Another benefit to Propeller’s adaptabil-

ity is that it allows us to easily integrate new genetic representations of computer programs and genetic

operators into the system to help further investigate our study of probabilistic genomes.

The Propeller GP system solves various genetic programming problems by outputting computer pro-

grams created in the Push programming language. Propeller includes Clojure implementations of many

Push instructions to create new Push programs. Additionally, Propeller utilizes a Clojure-based Push in-

terpreter that can execute a Push program and thus help it to evaluate the errors of Push programs based

on a set of inputs. We wish to reiterate that Propeller is written in Clojure, while the computer programs

it evolves and ultimately generates to solve a given problem consist entirely of Push instructions.

The main component of Propeller is the genetic programming algorithm, as it simplifies the biological

evolutionary process into its essential steps. Given a benchmark problem, Propeller will initialize a popu-

lation of random candidate solutions and then determine how to measure the errors of each individual in

16

the population. After that, the system will select the Push programs in the population with lower errors

and choose which variation methods to use to create child programs. Propeller then decides which Push

programs will form the new population for the next generation of the genetic programming run.

Additionally, Propeller provides an intuitive interface that allows a human programmer to specify

benchmark problems and customize run parameters. Benchmark problems are the set of problems used

to measure the performance of a genetic programming system. Propeller’s design helps a human user to

describe a benchmark problem and what type of computer program it should output based on a genetic

source of Push instructions. Additionally, the system enables a human user to input an objective function

and training set to measure a candidate solution’s errors. Human programmers can also introduce new

genetic programming methods into Propeller that are system-compatible with its genetic programming

logic.

2.1.2 The Push Programming Language

Push is a programming language designed specifically for genetic programming. Push utilizes a stack-

based execution architecture with a separate stack for each data type (e.g. integer, float, boolean, string,

vectors of integers, vectors of booleans, etc). Furthermore, the programming language contains types and

instructions that permit run-time manipulation and execution of code.

Push executes an instruction by popping inputs from the top of the designated data stacks and pushing

output onto the appropriate-typed stack. Each Push instruction targets specified data stacks to obtain its

inputs and to also insert its output. With this implementation, Push programs can even use a variety of

control structures.

By combining this expressiveness with the only syntax rule for a Push program being balanced paren-

theses, Push allows Propeller to generate syntactically valid Push programs. Genetic programming sys-

tems often struggle evolving computer programs written in other languages due to their proneness to

compile errors when modifying them without following strict syntax rules. Push, however, stresses exe-

cution safety, which results in any newly formed Push program being able to execute without errors. This

defining feature of the programming language helps Propeller to freely combine different instructions and

create Push programs that can evolve in the genetic programming run.

17

2.1.3 Plushy Genomes

Propeller uses Plushy genomes to represent Push programs. A Plushy is a linear data structure consisting

of a sequence of literals and Push instructions. Because of a Plushy genome’s simple and flexible structure,

it is easy for the GP system to manipulate and generate new Plushies. Propeller primarily interacts with

Plushy genomes for a majority of the evolutionary process. As a result, Propeller indirectly evolves Push

programs by creating and continuously improving upon a population of Plushy genomes.

(5 x int gt CLOSE exec if x SKIP int sqrt CLOSE x 0.13 2 int mult)

Figure 2.1: A (Non-Probabilistic) Plushy Genome

Propeller only has direct interactions with Push programs during the evaluation process to measure

the errors of a Plushy genome. The evaluation of a Plushy genome’s quality of errors begins with Propeller

performing a translation process to map the Plushy to its corresponding Push program. The GP system

will then use inputs from the training set on the specified objective function and program to generate the

expected and predicted output, respectively. The error on that given input is the absolute value of the

difference between these two outputs. Propeller collects the set of errors for each input in the training set

and assigns them to the Plushy genome. Since the Plushy genome is the genetic representation of a Push

program, the genome’s errors can be viewed as the translated program’s errors.

(5 x int gt CLOSE exec if x SKIP int sqrt CLOSE x 0.13 2 int mult) → (5 x int gt exec if (3 x int sub) (x 2 int mult))

Figure 2.2: Translation from Plushy Genome to Push Program

For our investigation, we developed probabilistic genomes based on the design of Plushy genomes with

the additionwhere each gene instruction is associatedwith some probability. With this new representation,

we can develop a new mutation method that targets these probabilities rather than the Push instructions

within a Plushy genome. We provide more details about this new genome representation of Push programs

and variation methods in sections 2.3 and 2.5.1, respectively.

18

2.2 Genetic Operators

2.2.1 Selection

We use epsilon-lexicase selection to choose parent Plushies in the population to produce child Plushy

genomes during the reproductive process. Epsilon-lexicase selection is a variant of lexicase selectionwhere

it uses test cases to filter the population so that the best-performing individuals remain in the selection

pool. Lexicase selection repeats this process until a single candidate solution remains and is the individual

selected to reproduce child programs. Epsilon-lexicase selection is different from lexicase selection because

it relaxes the lexicase filtering step by removing individuals who fall outside of some epsilon of the best at

each training case (La Cava, Spector, Danai 2016). As a result, this change in the filtering process softens

the selective pressure from lexicase selection, allowing epsilon-lexicase selection to select individuals that

are still doing well in specific cases.

The epsilon-lexicase selection algorithm proceeds as follows:

1. Initialize

a. Set selection pool to be the entire population of programs.

b. Set cases to be a list of all the test cases in the training set in random order.

2. Loop

c. Set t to be the first test case in cases.

d. Set best to the best error value of any individual in selection pool on t.

e. Calculate epsilon by performing the median absolute deviation of the population on t.

f. Filter selection pool to include only individuals within epsilon of best.

g. If selection pool contains just a single individual then return it.

h. If cases contain just a single test case then return a randomly selected individual from the pool.

i. Otherwise pop t from cases and go to loop.

We implemented epsilon-lexicase selection into Propeller to use in our experiments. Epsilon-lexicase

is known for its effectiveness on symbolic regression problems as it can produce more accurate models

than popular selection methods. We plan to use epsilon-lexicase selection as our benchmark suite consists

entirely of float regression problems.

19

2.2.2 Variation

In addition to our new variation method that targets a probabilistic genome’s probabilities rather than its

instructions, we will also use another mutation operator called uniform mutation by addition and deletion

(UMAD) in our genetic programming runs. In their 2018 paper, “Program Syntheis using Uniform Muta-

tion by Addition and Deletion”, Helmuth, McPhee, and Spector describe UMAD as a single-parent variation

method that creates a child Plushy from a parent genome by performing two sweeps to add and delete

gene instructions. The first sweep will add random genes before or after each existing gene in a given

genome, with the second randomly deleting gene instruction from the resulting genome. The mutation

operator performs the addition and deletion processes independently from each other, allowing it to be a

less restricted form of mutation compared to traditional mutation methods.

UMAD allows a user to specify the rate of addition and the rate of deletion performed when creating

a child Plushy from a parent Plushy. When the addition rate is higher than the deletion rate, the genome

sizes will continue to increase throughout the evolutionary process. On the other hand, a larger deletion

rate will cause the Plushy size to shrink after many generations. To implement a size-neutral UMAD,

where the mutation method, on average, deletes the same amount of genes as it adds, a user can calcu-

late the appropriate deletion rate based on the following equation that takes the addition rate as input:

deletion rate = addition rate
1+ addition rate .

2.3 Probabilistic Plushy genomes

Probabilistic Plushy genomes are linear data structures that consist of Push instructions and constant val-

ues, similar to Non-Probabilistic Plushy genomes. The difference, however, is that each gene instruction

in the Probabilistic Plushy genome is associated with a number within the interval [0,1]. As a result, each

element in a Probabilistic Plushy is a tuple of a Push instruction and a corresponding float number. A

Probabilistic Plushy can express a Non-Probabilistic Plushy genome by initially creating an empty Non-

Probabilistic Plushy. After that, we iterate through each gene in the Probabilistic Plushy and use these

float values as probabilities of adding the associated Push instruction into the Non-Probabilistic Plushy.

As such, an expressed Non-Probabilistic Plushy consists of sub-sequences of the Push instructions from a

20

Probabilistic Plushy.

([5 0.32] [x 0.12] [int gt 0.43] [CLOSE 0.23] [exec if 0.76] [x 0.53] [SKIP 0.23] [int sqrt 0.34] [CLOSE 0.32]
[x 0.13] [2 0.67] [int mult 0.93])

Figure 2.3: A Probabilistic Plushy Genome

The conversion from a Probabilistic Plushy genome to a Push program begins by expressing a Non-

Probabilistic Plushy out of a Probabilistic Plushy. Once created, the process uses the operation discussed

in section 2.1.3 to translate the Non-Probabilistic Plushy into a Push program. Since Probabilistic Plushy

genomes generate Non-Probabilistic Plushies according to their probabilities, expressing the genome mul-

tiple times may form different Non-Probabilistic Plushies and thus translate to various Push programs.

Therefore, unlike a Non-Probabilistic Plushy, a Probabilistic Plushy genome maps to more than one Push

program.

([5 0.32] [x 0.12] [int gt 0.43] [CLOSE 0.23] [exec if 0.76] [x 0.53] [SKIP 0.23] [int sqrt 0.34] [CLOSE 0.32]
[x 0.13] [2 0.67] [int mult 0.93])

↙↘
(5 exec if int sqrt x 2 int mult) (x int gt CLOSE exec if x int mult)

Figure 2.4: Expressing Multiple Non-Probabilistic Plushies from a Probabilistic Plushy

2.4 Multiple Evaluations

Normally, Propeller will evaluate the errors of a Non-Probabilistic Plushy by translating it to a Push pro-

gram and using inputs from a training set to measure the absolute value of the difference between the

expected outputs and the program’s predicted outputs. With Probabilistic Plushies, however, their in-

structions are not deterministic since each one has a chance of not being expressed. In other words, the

errors of a Probabilistic Plushy are not constant because it can translate into multiple Non-Probabilistic

Plushies, and thus many computer programs, with different errors. As a result, the current evaluation

method used to calculate the errors of a Non-Probabilistic Plushy is not effective in determining the qual-

ity of errors of a Probabilistic Plushy.

21

The multiple evaluations method attempts to measure the errors of a Probabilistic Plushy by associ-

ating it with the errors of a Non-Probabilistc Plushy it can express. More specifically, the approach takes

a Probabilistic Plushy as input and generates a specified number of Non-Probabilistic Plushies from its

instructions. We then run Propeller’s evaluation process on these expressed Non-Probabilistic Plushies by

translating them into Push programs and calculating each one’s respective errors. After that, we sum each

Non-Probabilisitc Plushy’s errors to obtain their total error and find the genome with the minimum total

error from the group of expressed Plushies. The process then assigns the errors of the selected Plushy

to represent the errors of the Probabilistic Plushy. The Non-Probabilistic Plushy with this minimal total

error is also associated with the Probabilistic Plushy for later use during the variation phase. As such,

we can judge how “good” a Probabilistic Plushy will be in solving a given problem according to its set of

expressible Non-Probabilistic Plushies.

With this approach, selection requires no changes when Propeller uses Probabilistic Plushies, as each

genome’s errors are associated with the errors of an expressed Non-Probabilistic Plushy. Similar to how

Propeller performs the selection process with Non-Probabilistic Plushies, the GP system chooses the Prob-

abilistic Plushies in the population to move on to the variation phase based on their errors. In the next

section, we will show how the multiple evaluations method helps to perturb the probabilities of a Proba-

bilistic Plushy.

([5 0.32] [x 0.12] [int gt 0.43] [CLOSE 0.23] [exec if 0.76] [x 0.53] [SKIP 0.23] [int sqrt 0.34] [CLOSE 0.32]
[x 0.13] [2 0.67] [int mult 0.93])

↙↘
(5 exec if int sqrt x 2 int mult) (x int gt CLOSE exec if x int mult)

↓ ↓
errors 1 errors 2

↘ ↙
total error 1 < total error 2

↓
{errors = errors 1, Associated Non-Probabilistic Plushy = (5 exec if int sqrt x 2 int mult)}

Figure 2.5: Multiple Evaluations Method on a Probabilistic Plushy using 2 expressions

22

2.5 New Genetic Operators

2.5.1 UMAD

We implemented a version of UMAD that was compatible with Probabilistic Plushy genomes. Similar to

the UMAD used on Non-Probabilistic Plushy genomes, our new UMAD performs uniform addition across

a Probabilistic Plushy by inserting a new gene instruction before or after each element in the Probabilistic

Plushy based on the UMAD rate. The difference is that the gene instruction is instead a Push instruction

with an associated probability. Uniform deletion, the second phase of UMAD, requires no changes to be

used in the updated version of UMAD since the type of gene instruction does not impact the function’s

deletion logic.

2.5.2 Biased-perturbation mutation

Originally, we created a mutation function that performed minor tweaks to the probabilities of a Prob-

abilistic Plushy to maintain behavior similarity between parent and child Probabilistic Plushy genomes.

Given a Probabilistic Plushy, the method perturbs each instruction’s probability by adding the values with

some “random” amount. This “random” number was the product of some specified standard deviation

multiplied by a Gaussian noise factor of mean 0 and standard deviation 1. The function returns a child

Probabilistic Plushy genome with slightly different probabilities from its parent’s probabilities.

Since the parent and child Probabilistic Plushy genomes share the same sequence of instructions

with slight variations in their probabilistic values, they often generate the same set of expressible Non-

Probabilistic Plushies. As a result, these genomes can generate Non-Probabilistic Plushies that produce

comparable outputs when evaluated on a training set, meaning that the parent and child genomes have

similar behaviors. The slight semantic difference between the genomes is that one has a higher chance

of creating a particular Non-Probabilistic Plushy from the set than the other. In traditional GP mutation

methods, adding/deleting/changing instructions creates a big effect that causes the child to “act” differ-

ently than its parent. By just perturbing the probabilities of genomes rather than their instructions, we

can produce a smaller effect of variation that allows parent and child candidate solutions to share behav-

ioral traits.

23

Although the original idea helped parent and child genomes behave similarly, we wanted an approach

that also aimed to adjust the probabilities based on the corresponding instruction’s contribution in ex-

pressing a Non-Probabilistic Plushy with low errors. In other words, if we knew a Probabilistic Plushy

could express some Non-Probabilistic Plushy with low total error, the child Probabilistic Plushy should be

biased in expressing that particular Non-Probabilistic Plushy. The reasoning behind this approach was that

a Probabilistic Plushy’s instruction should be more likely to be expressed if it appears in Non-Probabilistic

Plushies with low errors. On the other hand, if an instruction in a Probabilistic Plushy often appears in an

expressed Non-Probabilistic Plushies with a high total error, then that instruction should have a decreased

chance of being expressed in the mutated Probabilistic Plushy. Despite slightly decreasing the probabili-

ties of instructions that do not seem relevant to the given problem, we still keep these instructions in the

Probability Plushy in the chance that they can help generate a Non-Probabilistic Plushy with minimal total

error.

The biased-perturbation mutation (BPM) method first extracts the information added from the multi-

ple evaluation function to obtain the expressed Non-Probabilistic Plushy that represents the Probabilistic

Plushy’s errors. The method will then iterate each Push instruction in the Probabilistic Plushy and check

if it is in the Non-Probabilistic Plushy. Depending on if the instruction appeared in the Non-Probabilistic

Plushy, the method will add or subtract by a “random” amount. Once again, the “random” value is a prod-

uct of some standard deviation argument multiplied by a Gaussian noise factor of mean 0 and standard

deviation 1. This approach will cause the expressed instructions to be more likely or biased to have their

probabilities increase than the ones that do not appear in the Non-Probabilistic Plushy. By applying this

method over numerous generations, each instruction’s probability will approach 0 or 1, with the sequence

of instructions with high nonzero probabilities expressing to a Non-Probabilistic Plushy with low total

error.

24

([5 0.32] [x 0.12] [int gt 0.43] [CLOSE 0.23] [exec if 0.76] [x 0.53] [SKIP 0.23] [int sqrt 0.34] [CLOSE 0.32]
[x 0.13] [2 0.67] [int mult 0.93])

↓
Associated Non-Probabilistic Plushy = (5 exec if int sqrt x 2 int mult)

↓
([5 0.33] [x 0.09] [int gt 0.47] [CLOSE 0.18] [exec if 0.79] [x 0.45] [SKIP 0.25] [int sqrt 0.37] [CLOSE 0.25]

[x 0.15] [2 0.62] [int mult 0.95])

Figure 2.6: Biased-perturbation mutation performed on a Probabilistic Plushy Genome

2.6 Data Collection

2.6.1 Benchmark Problems

To measure Propeller’s performance using Probabilistic Plushies and Non-Probabilistic Plushies, we se-

lected seven float regression problems for testing. In a regression problem, the goal for GP is to create a

computer program that most accurately fits a given data distribution. These problems require a training

set of inputs and an objective function, often a mathematical expression, that takes these inputs to produce

an output. Propeller uses these two components throughout the evolutionary process to create a program

such that given a number from the training set as input, the predicted output from the program matches

the expected output from the objective function. We then evaluate the program with a testing set of un-

seen data to determine if the program generalizes well to new data. If the program’s predicted output is

equivalent to the objective function’s expected output using inputs from the testing set, then the program

is a good fit for the data distribution.

The symbolic regression problems we used for experimentation were float regression problems, where

the variable type of the inputs and outputs are float numbers. The training set of inputs we used for the

benchmark problems were the numbers from -1.5 to 1.5 in steps of 0.1, totaling (1.5 − (−1.5))/0.1 = 30

inputs. With our testing set, we decided on the group of numbers from -1.75 to 1.75 in increments of 0.05,

which results in (1.75− (−1.75))/0.05 = 70 inputs.

We normally split the training and testing sets into two separate groups of data inputs. In our case,

however, we used a training set that was a subset of our testing set, which may appear odd as we generally

want our testing set to consist of inputs a program has not seen before. We believe the testing set we

25

defined is appropriate for our experimentation because we still provide a candidate program with unseen

data to evaluate on. Additionally, a program that has a high total error on the training set will also not

perform with the testing set, meaning that the program will not generalize well to the data distribution.

As for the objective functions, we chose the mathematical formula f(x) = (1 + x3)3 + 1 and similar

variants to it to represent the outputs of the training set. By similar variants, we mean a combination of

additional terms and changes to the coefficients of the previously shown objective functions. Table 2.1

provides the list of objective functions used for our float regression problems.

(1 + x3)3 + 1

(1 + x+ x2)3 + 4

(1 + x2)3 + 1

(1 + x3)4 + 1

(2 + x3)3 + 1

(1 + x+ x4)3 + x

(1 + x3)3 + x2 + 3

Table 2.1: Objective functions used in benchmark suite

We decided to use problems with similar objective functions rather than a more diverse set of symbolic

regression problems or problems from different domains because it allowed us to observe subtle differences

in Propeller’s performance with Probabilistic Plushies versus using Non-Probabilistic Plushies. Another

reason we chose these problems as our benchmark suite is that they allowed Propeller to output solutions

within a reasonable period, allowing us to execute multiple runs of the same problem. Often, more difficult

GP problems require several days for Propeller to produce a solution program, which limits the number of

runs we can perform in our experimentation.

2.6.2 Experimental Design

Preliminary Experimentation

26

Non-Probabilistic Probabilistic

Generations 500 500

Population 500 500

Number of Evaluations Per Plushy 1 10

Multiples Evaluations Std - 0.2

Max initial Plushy Size 100 100

Solution Error Threshold 0.1 0.1

Step Limit 200 200

Parent-Selection Epsilon-lexicase Epsilon-lexicase

Variation {100% UMAD} {5% UMAD, 95% Biased-Perturbation Mutation}

UMAD addition rate 0.1 0.1

UMAD deletion rate 0.082 0.082

Elitism False False

Table 2.2: Non-Probabilistic and Probabilistic Run Parameters

We will begin with a preliminary experiment that runs Propeller on the symbolic regression problems dis-

cussed in section 2.6.1 using non-probabilistic and probabilistic run parameters. Each configuration uses

a particular type of Plushy genome, non-probabilistic or probabilistic, and other Propeller system param-

eters such as population size and generation limit. Additionally, we include specific genetic operators and

error evaluation processes for each set of run parameters. Table 2.2 shows the non-probabilistic and prob-

abilistic settings we used in our initial experimentation. Additionally, section 6.1 shows the instruction set

we used for our preliminary experimentation.

Based on the run parameters presented in Table 2.2, one could argue about the difference in the to-

tal number of evaluations given to Probabilistic Plushies and Non-Probabilistic Plushies. During the er-

ror evaluation process of Probabilistic Plushies in the population, the system performs ten evaluations

on a genome when determining the appropriate error value to assign it. On the other hand, each Non-

Probabilistic Plushy only needs to be evaluated once when measuring its errors. As a result, the multiple

evaluations method in the probabilistic run parameters causes Propeller to execute additional error eval-

uations when using Probabilistic Plushy genomes than Non-Probabilistic genomes, which results in an

unfair comparison of the GP system’s performances using the non-probabilistic and probabilistic settings.

27

Non-Probabilistic (generations) Non-Probabilistic (population size)

Generations 5000 500

Population 500 5000

Number of Evaluations Per Plushy 1 1

Multiples Evaluations Std - -

Max initial Plushy Size 100 100

Solution Error Threshold 0.1 0.1

Step Limit 200 200

Parent-Selection Epsilon-lexicase Epsilon-lexicase

Variation {100% UMAD} {100% UMAD}

UMAD addition rate 0.1 0.1

UMAD deletion rate 0.082 0.082

Elitism False False

Table 2.3: Non-Probabilistic Run Parameters (Equal Total Number of Error Evaluations)

In Table 2.2, the probabilistic settings allow Propeller to perform at most 10 error evaluations per can-

didate solution x 500 candidates solutions x 500 generations = 2,500,000 error evaluations. With the current

non-probabilistic settings, there can be 1 error evaluation per candidate solution x 500 candidate solutions

x 500 generations = 250,000 possible evaluations executed in a Propeller run. To equalize the total number

of error evaluations in the probabilistic configuration, we created two additional non-probabilistic run pa-

rameters that either increased the generation limit or the population size by a factor of 10. Table 2.3 shows

these new non-probabilistic settings we will include in our preliminary experimentation. We still plan to

run Propeller with our initial non-probabilistic settings to determine if Propeller, using the probabilistic

run parameters, can at least outperform itself given such settings despite this unfair advantage in the total

number of evaluations.

For each of the seven float regression problems and configurations presented in this section, we per-

form 100 runs of Propeller on the given problem using one of the settings from Tables 2.2 and 2.3. In total,

our experiment will consist of 7 problems x 100 runs per problem x 4 different run parameters = 2400 runs.

We will perform these 2400 runs on the Amherst College High-Performance Computing System (HPC)

28

as it can handle the computational-intensive runs from our Propeller experiments and allows us to collect

necessary data. The system relies on the Slurm job management program to control the list of runs queued

in the cluster. For each of the 2400 runs, we will have Propeller output a solution program to a given prob-

lem, the number of generations it needed to find the program, and the total error of the program when

evaluated on a testing set.

We will use the success rate to gauge Propeller’s performance using Non-Probabilistic Plushies and

Probabilistic Plushies. Given a benchmark problem, the success rate is the number of successes out of the

total number of times we run Propeller on it. We consider a Propeller run successful if the system finds

a candidate solution in the population with a total error of at most 0.1 after executing the error evalua-

tion process. Our termination criterion accepts a non-zero total error because we accounted that marginal

discrepancies between an objective function and solution program may occur due to the nature of per-

forming arithmetic with float numbers. Since all our experiments involve executing 100 runs of Propeller

on a benchmark problem, the success rate will be the same as the number of successes out of the 100 runs.

Although there are many other metrics we could have used, such as the average run time or the average

number of generations of successful runs, the success rate metric helps us to directly compare Propeller’s

solving capabilities using Non-Probabilistic Plushies versus Probabilistic Plushies.

Genetic Sources

After our preliminary runs, we wanted to investigate how Probabilistic Plushy genomes would impact

Propeller’s performance on different genetic sources. A GP system’s success rate on a problem is known

to suffer when given a more generic instruction set. The reason is that a computer program often contains

“bad ” instructions that do not contribute to or even decrease the program’s solving power on a given prob-

lem. We hypothesize that Probabilistic Plushies can improve Propeller’s performance on generic instruc-

tion sets due to its ability to express Non-Probabilistic Plushies. More specifically, unlike Non-Probabilistic

Plushies, Probabilistic Plushies can effectively eliminate “bad” instructions within their structures by us-

ing their probabilities to generate Non-Probabilities that contain important instructions to solve a given

problem. Combined with the biased-perturbation mutation method, Probabilistic Plushies can pass down

these behavioral traits to new genomes, helping them to express Non-Probabilistic Plushies with such in-

29

structions.

We created two genetic sources that differ by their generality to float regression problems. The first in-

struction set, the hand-tuned genetic source, was tailored specifically for our benchmark suite, consisting

of function input, float operations, and constants. For our second instruction set, we threw “everything

but the kitchen sink” into the genetic source to make it much more generic than the hand-tuned genetic

source. In other words, the “kitchen-sink” genetic source contains multiple data type instructions (e.g.

string, boolean, integers, floats, etc), making it applicable to many problem domains. Section 6.2 lists the

instructions included in the hand-tuned and kitchen-sink genetic sources.

Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

Generations 500 500 500 500

Population 500 500 500 500

Number of Evaluations Per Plushy 10 10 10 10

Multiples Evaluations Std 0.2 0.2 0.2 0.2

Max initial Plushy Size 100 100 100 100

Solution Error Threshold 0.1 0.1 0.1 0.1

Step Limit 200 200 200 200

Parent-Selection Epsilon-lexicase Epsilon-lexicase Epsilon-lexicase Epsilon-lexicase

Variation {5% UMAD, 95% BPM} {20% UMAD, 80% BPM} {30% UMAD, 70% BPM} {20% Crossover, 20% UMAD, 60% BPM}

UMAD addition rate 0.1 0.1 0.1 0.1

UMAD deletion rate 0.082 0.082 0.082 0.082

Elitism False False False False

Table 2.4: Probabilistic Run Parameters (Genetic Sources Experiment)

Along with new genetic sources, we also implemented additional probabilistic settings to observe how

Propeller performs using different combinations of genetic operators to create new Probabilistic Plushies.

We developed three more probabilistic configurations based on the probabilistic run parameters from pre-

liminary experimentation. Each probabilistic configuration differs by the percentage of UMAD and the

percentage of the biased-perturbation mutation used in a Propeller run and holds all other run parameters

constant.

We decided to reconfigure another probabilistic setting to incorporate crossover into the genetic oper-

ators used on Probabilistic Plushies, which already included UMAD and the biased-perturbation mutation

method. Our probabilistic settings until now have all mainly focused on the mutation side of the variation

phase. We wanted to observe and find if Propeller would benefit the system’s performance on benchmark

30

problems by introducing crossover into its run parameters when using Probabilistic Plushies. Table 2.4

shows the four new probabilistic run parameters and highlights the ratios of each variation method used

in a given probabilistic setting.

The set of run parameters we will use for this experiment are the settings used in our initial testing,

tables 2.2 and 2.3, and the run parameters presented in table 2.4. For each problem in our benchmark suite

and configuration in our set of run parameters, we will perform 100 Propeller runs on a given problem

using either the hand-tuned or kitchen-sink genetic source. This experiment results in conducting 7 prob-

lems x 100 runs per problem x 7 run parameters = 4900 runs. As mentioned in our last section, we will

execute these runs on the HPC and have Propeller produce the same output. Additionally, we will use the

success rate to gauge Propeller’s performance on our benchmark suite.

31

Chapter 3

Results

3.1 Preliminary Experimentation

Objective function Non-Probabilistic Plushy Non-Probabilistic Plushy (generation) Non-Probabilistic (population size) Probabilistic Plushy

(1 + x3)3 + 1 24/24 43/43 50/50 85/85

(1 + x+ x2)3 + 4 9/9 19/19 23/23 21/21

(1 + x+ x4)3 + x 0/0 0/0 0/0 0/0

(1 + x3)3 + x2 + 3 0/0 1/1 1/1 2/2

(1 + x2)3 + 1 81/81 100/100 100/100 91/91

(2 + x3)3 + 1 15/15 38/38 28/28 20/20

(1 + x3)4 + 1 5/5 48/48 32/32 40/40

Total 134/134 249/249 234/234 259/259

Table 3.1: Number of Successes out of 100 Independent Runs (training set/testing set)

Table 3.1 shows Propeller’s success rates on each of the benchmark problems when using the set of run

parameters discussed in section 2.6.2. The successes on the left of the “/” are the number of solution

programs that are under the error threshold 0.1 when run on the training set. Since the testing set

has more test cases than the training set, we calculated the testing error threshold using the training

error threshold per individual training example to obtain 70 (testing cases) × 0.1 (training error threshold)
30 (training cases) =

0.23 (testing error threshold). As a result, the values on the right of the “/” indicate the solutions within

our determined error threshold when run on the testing set. Based on our observations of the number of

successes on the testing set, Non-Probabilistic and Probabilistic Plushy genomes generalize well on unseen

data.

32

Objective function Non-Probabilistic Plushy Non-Probabilistic Plushy (generation) Non-Probabilistic (population size) Probabilistic Plushy

(1 + x3)3 + 1 30.71 28.47 36.97 78.76

(1 + x+ x2)3 + 4 28.26 23.4 28.54 79.35

(1 + x+ x4)3 + x 24.42 26.89 26.87 78.34

(1 + x3)3 + x2 + 3 30.53 27.17 29.66 80.66

(1 + x2)3 + 1 30.94 32.55 46.02 76.32

(2 + x3)3 + 1 34.49 29.24 32.58 82.02

(1 + x3)4 + 1 28.71 25.32 31.93 76.6

Table 3.2: Average Non-Probabilistic Plushy and Probabilistic Genome Size out of 100 Independent Runs

Objective function Successful Runs Unsuccessful Runs

(1 + x3)3 + 1 0.37 0.41

(1 + x+ x2)3 + 4 0.37 0.40

(1 + x+ x4)3 + x - 0.41

(1 + x3)3 + x2 + 3 0.43 0.39

(1 + x2)3 + 1 0.36 0.40

(2 + x3)3 + 1 0.41 0.40

(1 + x3)4 + 1 0.39 0.40

Table 3.3: Average Proportion of Probabilities Equal to 0

A noteworthy observation of Probabilistic Plushy genomes is that they helped Propeller perform better

on the first benchmark problem than when the GP system used any other non-probabilistic configuration.

When comparing Propeller’s success rates using the probabilistic settings to the non-probabilistic run

parameters in Table 2.2, we found that the probabilistic runs had a larger number of successes than the

non-probabilistic runs for a majority of the benchmark suite. This initial comparison shows us that Prob-

abilistic Plushy genomes can improve Propeller’s performance on GP problems.

When equalizing the total number of error evaluations for the non-probabilistic and probabilistic runs,

Propeller appears more effective in solving our benchmark problems using the non-probabilistic settings

instead of the probabilistic run parameters. We observed that the non-probabilistic runs with additional

generations and a bigger population size had a higher success rate than the probabilistic runs on most

of our symbolic regression problems, with either, if not both, of the non-probabilistic settings resulting

in Propeller having more success than when it uses the probabilistic settings. However, we found that

Propeller performs better on the entire benchmark suite using Probabilistic Plushy genomes instead of

33

Non-Probabilistic Plushy genomes when totaling the number of successes for their respective columns.

While probabilistic genomes can improve a GP system’s success rate on a given problem, it is still unclear

if we can generalize this increase in performance with error evaluations.

We wish to note that these non-probabilistic runs took much longer to finish than the probabilistic

runs, particularly the non-probabilistic settings where we increased the population size. Although we

do not have specific runtime metrics, both non-probabilistic configurations required Propeller to run for

multiple days when attempting to find a solution program. These runtimes were much longer than the

probabilistic runs, which only needed a few hours. As a result, we can claim that Probabilistic Plushy

genomes are more practical when solving GP problems than Non-Probabilistic Plushy genomes with ad-

ditional error evaluations due to their runtimes.

Table 3.2 displays the average genome size for each benchmark problem and configuration. We chose

the solution Plushy in a successful run for our calculation of the average Plushy genome length. On the

other hand, since the unsuccessful runs did not produce a solution program, we decided to use the genome

in the population with the least total error at the final generation of the Propeller run when calculating

the average genome size.

We observed that the average genome sizes were fairly consistent across all benchmark problems and

run parameters. The average genome size for the Non-Probabilistic Plushy genomes appears to range

around 20-30, with the highest average genome length being 46.02.

We found that the average genome size for Probabilistic Plushy genomes was much larger than Non-

Probabilistic Plushy genomes. Similar to the non-probabilistic results, the average genome length also

seems consistent across the benchmark suite. We believe that the average Probabilistic Plushy genome

size is large due to the number of gene instructions with a probability equal to 0 in a Probabilistic Plushy

genome.

Table 3.3 shows the average proportion of the probabilities of the Probabilistic Plushies equal to 0. The

numbers on the left of “/” are the successful runs, while the values on the right are the unsuccessful runs.

The ‘-’ in the table serves to indicate that Propeller had no successful runs on a particular benchmark prob-

lem using specific run parameters. We see that about a third of a Probabilistic Plushy contains genes with

a probability of 0, with higher percentages occurring in the unsuccessful runs. We reason that removing

34

these genes can help reduce the average Plushy length for Probabilistic Plushies.

We wish to note that we are presenting unsimplified programs in our tables. Propeller is capable of

reducing a Plushy genome into a more concise form through a simplification process, resulting in the

genome’s size decreasing. Since we did not perform the simplification of evolved genomes in our GP runs,

the average sizes are much bigger than required. We suggest measuring the average size of simplified

genomes in future experiments with Probabilistic Plushy genomes.

Objective function Successful Runs Unsuccessful Runs

(1 + x3)3 + 1 0.76 0.81

(1 + x+ x2)3 + 4 0.76 0.80

(1 + x+ x4)3 + x - 0.80

(1 + x3)3 + x2 + 3 0.77 0.79

(1 + x2)3 + 1 0.75 0.81

(2 + x3)3 + 1 0.78 0.80

(1 + x3)4 + 1 0.77 0.80

Table 3.4: Average Proportion of Deterministic Probabilities (0 or 1)

Table 3.4 presents the average proportion of deterministic probabilities, probabilities equal to 0 or 1,

in a Probabilistic Plushy genome for successful and unsuccessful runs. Similar to how we calculated the

average Plushy genome size, we used solution programs for the successful runs and the lowest total-error

individual in the population at the final generation of a Propeller run for the unsuccessful runs for our

analysis. Similar to table 3.3, the ‘-’ in table 3.4 informs us that a benchmark problem had zero successful

Propeller runs using a particular setting.

From our observations, many of the probabilities of Probabilistic Plushy genomes for both types of

runs were equal to 0 or 1. In addition, these percentages were consistent across the benchmark problems.

These results require further investigation to determine how changing the proportion of deterministic

probabilities in Probabilistic Plushy genomes impacts Propeller’s performance. We also noticed that the

unsuccessful runs had a slightly higher average percentage of deterministic probabilities than the success-

ful runs, but we believe this difference is trivial.

35

3.2 Genetic Sources

3.2.1 Hand-tuned

Objective function Non-Prob Non-Prob (generations) Non-Prob (population size)

(1 + x3)3 + 1 49/49 84/84 67/67

(1 + x+ x2)3 + 4 38/38 76/76 66/66

(1 + x+ x4)3 + x 65/65 90/90 82/82

(1 + x3)3 + x2 + 3 20/20 60/60 42/42

(1 + x2)3 + 1 100/100 100/100 100/100

(2 + x3)3 + 1 79/79 99/99 88/88

(1 + x3)4 + 1 92/92 99/99 98/98

Total 443/443 608/608 543/543

Table 3.5: Number of Successes out of 100 Independent Runs (training set/testing set)

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 34/34 46/46 53/53 55/55

(1 + x+ x2)3 + 4 24/24 38/38 43/43 50/50

(1 + x+ x4)3 + x 20/20 40/40 44/44 58/58

(1 + x3)3 + x2 + 3 11/11 6/6 11/11 14/14

(1 + x2)3 + 1 71/71 85/85 91/91 89/89

(2 + x3)3 + 1 39/39 51/51 49/49 56/56

(1 + x3)4 + 1 67/67 86/86 87/87 90/90

Total 266/266 352/352 378/378 412/412

Table 3.6: Number of Successes out of 100 Independent Runs (training set/testing set)

Tables 3.5 and 3.6 present Propeller’s success rates on the benchmark suite using non-probabilistic and

probabilistic run parameters and the hand-tuned genetic source. The row header of table 3.6 displays the

four probabilistic run parameters we used in our experiment that differ by the combination of genetic

operators specified to Propeller. The first three run parameters use some percentage of UMAD and biased-

perturbation mutation, while the last probabilistic setting introduces crossover into our Propeller runs

with Probabilistic Plushy genomes. The numbers on the left and right of the “/” in these tables refer to the

number of successes according to the training error threshold of 0.1 and the testing error threshold of 0.23,

respectively. Once again, the non-probabilistic and probabilistic runs generalize well over unseen data.

36

With the hand-tuned instruction set, Propeller performs better using the non-probabilistic run param-

eters than the probabilistic configurations on many of the benchmark problems by a large amount. Both

the non-probabilistic settings with additional error evaluations had higher successes than all of the prob-

abilistic settings. The non-probabilistic runs where we increased the number of generations appeared to

be the overall best run parameters for Propeller runs on the hand-tuned instruction set.

Based on table 3.6, it seems that Propeller had a higher number of successes on the first two benchmark

problems using the Prob (30% UMAD, 70% BPM) and Prob (20% Crossover, 20% UMAD, 60% BPM) config-

urations than when running with the non-probabilistic parameters discussed in table 3.5. Additionally,

for the probabilistic runs in table 3.7, we noticed that the success rates of the probabilistic runs trended

upward for many of the benchmark problems as we increased the percentage of UMAD and decreased

the percentage of the biased-perturbation mutation method. We reason that this surge in the number of

successes is possibly due to UMAD diversifying the population more often, allowing Probabilistic Plushies

to express new Non-Probabilistic Plushies it could not previously generate.

We also found that the probabilistic run parameters that included crossover in Propeller’s genetic oper-

ators outperformed all other probabilistic settings across all benchmark problems. From our observation,

we believe that Probabilistic Plushies create a relaxed version of crossover due to their ability to express

Non-Probabilistic Plushies. We elaborate more about this topic in section 4.1.

Objective function Non-Prob Non-Prob (generations) Non-Prob (population size)

(1 + x3)3 + 1 57.11 48.37 52.3

(1 + x+ x2)3 + 4 54.06 48.39 51.61

(1 + x+ x4)3 + x 61.61 51.37 59.17

(1 + x3)3 + x2 + 3 49.53 51.51 54.95

(1 + x2)3 + 1 49.53 55.46 56.26

(2 + x3)3 + 1 61.26 58.68 50.65

(1 + x3)4 + 1 57.64 49.39 51.02

Table 3.7: Average Non-Probabilistic Plushy Size out of 100 Independent Runs

37

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 80.8 80.92 81.46 75.55

(1 + x+ x2)3 + 4 80.01 80.61 85.48 78.34

(1 + x+ x4)3 + x 78.99 82.17 79.1 78.21

(1 + x3)3 + x2 + 3 81.31 81.8 83.43 79.14

(1 + x2)3 + 1 76.62 72.37 73.99 73.32

(2 + x3)3 + 1 79.98 79.01 82.34 75.37

(1 + x3)4 + 1 76.65 75.07 78.31 74.02

Table 3.8: Average Probabilistic Plushy Size out of 100 Independent Runs

Table 3.7 displays the average Non-Probabilistic Plushy genome size for each benchmark problem and

non-probabilistic run parameters. Compared to the average Plushy length in our preliminary experiment,

the change to the hand-tuned instruction set increased the size of the Non-Probabilistic Plushy genomes

in these Propeller runs. In addition, the values in the table entries are consistent across each benchmark

problem and when increasing the number of error evaluations.

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 0.38/0.38 0.34/0.37 0.35/0.37 0.35/0.36

(1 + x+ x2)3 + 4 0.36/0.36 0.35/0.36 0.36/0.37 0.34/0.37

(1 + x+ x4)3 + x 0.34/0.38 0.38/0.38 0.36/0.36 0.37/0.37

(1 + x3)3 + x2 + 3 0.39/0.38 0.38/0.37 0.37/0.37 0.36/0.35

(1 + x2)3 + 1 0.37/0.39 0.34/0.37 0.36/0.40 0.34/0.40

(2 + x3)3 + 1 0.39/0.37 0.37/0.37 0.37/0.37 0.37/0.36

(1 + x3)4 + 1 0.37/0.36 0.36/0.36 0.34/0.36 0.36/0.35

Table 3.9: Average Proportion of Probabilities Equal to 0

When observing the average Probabilistic Plushy size in table 3.8, we saw that the Probabilistic Plushy

genome lengths are still relatively high for each of the benchmark problems and run parameters. Similarly,

we noticed that approximately a third of a Probability Plushy genome contained genes with probabilities

equal to 0 across all benchmark problems and probabilistic run parameters. We also found that these sizes

are consistent within their respective columns and across each objective function. Interestingly, the aver-

age Probabilistic Plushy length decreased across the benchmark suite once we introduced crossover into

Propeller’s set of mutation operators.

Table 3.10 shows the average proportion of deterministic probabilities for our probabilistic runs using

the hand-tuned genetic source. Once again, the percentages on the left and right of the “/” refer to the

38

successful and unsuccessful runs, respectively. Although the differences between the average proportions

of deterministic probabilities between the successful and unsuccessful runs are small, it is noteworthy to

state that the percentages of the successful runs are always lower than those of the unsuccessful runs. We

require additional experiments to understand this apparent trend in table 3.10.

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 0.77/0.79 0.74/0.80 0.74/0.80 0.74/0.79

(1 + x+ x2)3 + 4 0.77/0.78 0.75/0.80 0.75/0.80 0.74/0.81

(1 + x+ x4)3 + x 0.74/0.80 0.75/0.80 0.73/0.79 0.75/0.80

(1 + x3)3 + x2 + 3 0.78/0.79 0.78/0.79 0.77/0.80 0.77/0.80

(1 + x2)3 + 1 0.74/0.79 0.72/0.78 0.73/0.79 0.73/0.82

(2 + x3)3 + 1 0.77/0.80 0.74/0.81 0.75/0.80 0.75/0.80

(1 + x3)4 + 1 0.75/0.79 0.73/0.80 0.72/0.80 0.74/0.80

Table 3.10: Average Proportion of Deterministic Probabilities (0 or 1)

3.2.2 Kitchen-Sink

Objective function Non-Prob Non-Prob (generations) Non-Prob (population size)

(1 + x3)3 + 1 5/5 13/13 9/9

(1 + x+ x2)3 + 4 15/15 34/34 15/15

(1 + x+ x4)3 + x 0/0 2/2 2/2

(1 + x3)3 + x2 + 3 0/0 0/0 0/0

(1 + x2)3 + 1 49/49 79/79 79/79

(2 + x3)3 + 1 2/2 9/9 9/9

(1 + x3)4 + 1 7/7 13/13 20/20

Total 78/78 150/150 134/134

Table 3.11: Number of Successes out of 100 Independent Runs (training set/testing set)

Tables 3.11 and 3.12 present Propeller’s number of successes on the benchmark suite using non-probabilistic

and probabilistic run parameters and the kitchen-sink genetic source. Similar to our previous results, the

non-probabilistic and probabilistic runs generalize well on the testing set. The first notable observation

we found from these results is that the success rates drastically decreased using this instruction set in our

Propeller runs instead of the hand-tuned genetic source. These findings make sense as the kitchen-sink

39

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 11/11 31/31 37/37 72/72

(1 + x+ x2)3 + 4 9/9 18/18 21/21 30/30

(1 + x+ x4)3 + x 0/0 0/0 2/2 2/2

(1 + x3)3 + x2 + 3 0/0 1/1 0/0 3/3

(1 + x2)3 + 1 36/36 65/65 70/70 77/77

(2 + x3)3 + 1 0/0 4/4 6/6 25/23

(1 + x3)4 + 1 13/13 25/25 26/26 68/67

Total 69/69 144/144 181/181 277/274

Table 3.12: Number of Successes out of 100 Independent Runs (training set/testing set)

genetic source is much more generic than the hand-tuned instruction set, which causes Propeller’s perfor-

mance to suffer on our benchmark suite. We see that, however, the differences in the number of successes

for the non-probabilistic runs are much greater than the probabilistic runs. Therefore, Propeller appears

to have a higher dropoff in performance using Non-Probabilistic Plushies than Probabilistic Plushies as we

increase the generality of the instructions sets we provide to the system.

Regarding the success rates of our probabilistic runs, we find that the number of successes trends

upward for many of the benchmark problems as we increase the UMAD/biased-perturbation mutation ra-

tio. We can also see that introducing crossover into our probabilistic runs results in Propeller performing

much better on the first, sixth, and last benchmark problems than when it uses other probabilistic run pa-

rameters. This observation provides valuable information into the potential of combining crossover with

Probabilistic Plushy genomes.

When comparing the number of successes of the probabilistic runs to the non-probabilistic runs, we

can see in the table that Propeller performs better on the first and last benchmark problems when using

“Prob(30% UMAD, 70% BPM)” or “Prob(20% Crossover, 20% UMAD, 60% BPM)” run parameters than with

any of the non-probabilistic settings. As such, the Probabilistic Plushies genome can help improve the

GP system’s performance on multiple problems than when the GP system uses Non-Probabilistic Plushies

and the number of total error evaluations is the same. In addition, these genomes can produce similar

or better success rates than the non-probabilistic runs as we introduce more UMAD and crossover to our

probabilistic runs.

From tables 3.13 and 3.14, we observe that running Propeller with the kitchen-sink genetic source

causes the average genome size to increase for Non-Probabilistic and Probabilistic Plushies, with the av-

40

erage lengths of the Probabilistic Plushies still being higher than the Non-Probabilistic Plushies. Table

3.15 also shows about the same average proportion of probabilities equal to 0 as the values presented in

table 3.9. A notable observation of the average genome sizes of Probabilistic Plushies is that this increase

resulted in some of these values exceeding our specified initial maximum genome size of 100. As in our

previous findings, the average genome lengths appear consistent across all benchmark problems and con-

figurations in both tables.

Objective function Non-Prob Non-Prob (generations) Non-Prob (population size)

(1 + x3)3 + 1 68.09 64.11 58.81

(1 + x+ x2)3 + 4 54.84 50.02 48.38

(1 + x+ x4)3 + x 66.67 62.29 64.69

(1 + x3)3 + x2 + 3 61.26 52.73 49.94

(1 + x2)3 + 1 59.59 52.4 62.75

(2 + x3)3 + 1 65.38 59.62 63.95

(1 + x3)4 + 1 63.88 58.15 64.5

Table 3.13: Average Non-Probabilistic Plushy Size out of 100 Independent Runs

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 94.75 102.54 103.5 96.93

(1 + x+ x2)3 + 4 97.68 100.38 100.78 86.85

(1 + x+ x4)3 + x 93.78 92.21 94.41 87.22

(1 + x3)3 + x2 + 3 96.91 106.66 108.51 103.1

(1 + x2)3 + 1 94.14 104.56 103.84 89.56

(2 + x3)3 + 1 96.64 104.65 105.98 90.12

(1 + x3)4 + 1 95.23 98.97 94.29 92.4

Table 3.14: Average Probabilistic Plushy Size out of 100 Independent Runs

Table 3.16 shows the average proportion of deterministic probabilities of the Probabilistic Plushy

genomes using the kitchen-sink instruction set. We observed that these percentages between the success-

ful and unsuccessful runs were similar across all benchmark problems and probabilistic settings, except for

the table entries with zero successful runs. We also noticed the averages of the percentage of deterministic

probabilities of the successful runs were always less than the proportions of the unsuccessful runs.

41

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 0.36/0.43 0.39/0.42 0.34/0.38 0.32/0.35

(1 + x+ x2)3 + 4 0.41/0.42 0.35/0.40 0.35/0.40 0.33/0.37

(1 + x+ x4)3 + x -/0.46 -/0.42 0.36/0.40 0.35/0.39

(1 + x3)3 + x2 + 3 -/0.42 -/0.40 -/0.40 0.25/0.36

(1 + x2)3 + 1 0.36/0.40 0.35/0.41 0.33/0.38 0.32/0.40

(2 + x3)3 + 1 -/0.43 0.35/0.42 0.40/0.40 0.33/0.37

(1 + x3)4 + 1 0.37/0.47 0.35/0.43 0.34/0.41 0.33/0.35

Table 3.15: Average Proportion of Probabilities Equal to 0

Objective function Prob (5% UMAD, 95% BPM) Prob (20% UMAD, 80% BPM) Prob (30% UMAD, 70% BPM) Prob (20% Crossover, 20% UMAD, 60% BPM)

(1 + x3)3 + 1 0.73/0.78 0.73/0.78 0.70/0.77 0.72/0.77

(1 + x+ x2)3 + 4 0.78/0.78 0.72/0.78 0.74/0.77 0.73/0.78

(1 + x+ x4)3 + x -/0.79 -/0.78 0.74/0.77 0.71/0.78

(1 + x3)3 + x2 + 3 -/0.79 -/0.79 -/0.78 0.68/0.77

(1 + x2)3 + 1 0.74/0.77 0.72/0.78 0.68/0.77 0.69/0.78

(2 + x3)3 + 1 -/0.78 0.72/0.79 0.76/0.78 0.74/0.78

(1 + x3)4 + 1 0.76/0.79 0.72/0.79 0.71/0.79 0.72/0.77

Table 3.16: Average Proportion of Deterministic Probabilities (0 or 1)

Although statistical hypothesis tests may help us to interpret the significance of the result, their in-

terpretation in the context of these experiments may not be trivial, and was beyond the scope of this

project. We recommend future studies of Probabilistic Plushy genomes utilize significance tests to com-

pare Propeller’s performances on benchmark problems using Probabilistic Plushies and Non-Probabilistic

Plushies.

42

Chapter 4

Limitations and Future Work

4.1 Crossover

Since our investigation primarily focused on creating child Probabilistic Plushy genomes using biased-

perturbationmutation, wewere limited in the number of runs we could perform using crossover. We found

from our experiment involving different genetic sources that adding crossover to Propeller’s set of genetic

operators for Probabilistic Plushies resulted in theGP systemhaving the best number of successes out of the

other probabilistic run parameters. With Non-Probabilistic Plushies, crossover often does not contribute

to creating lower error child genomes, as newly formed Plushies can consist of incompatible sequences

of instructions due to being formed by the halves of their parent genomes. As such, we hypothesize

that Probabilistic Plushy genomes can relax the effects of crossover by their ability to express into Non-

Probabilistic Plushies using their probabilities to “eliminate” such sequences, allowing the genetic operator

to be effective in the evolutionary process. Thus, one future work would be to experiment with different

crossover/UMAD/biased-perturbation mutation ratios to gauge Propeller’s performance with crossover.

4.2 Hyperparameter Tuning

One limitation of our investigation was the lack of hyperparameter tuning when running Propeller with

Probabilistic Plushies. With themultiple evaluationsmethod, we decided that the number of Non-Probabilistic

Plushies a Probabilistic Plushy would express was ten because we wanted more than one expression to

43

occur during the error evaluation process. In addition, we chose our percentage of biased-perturbationmu-

tation to always be much higher than our percentage of UMAD for convenience, as we wanted Propeller

to create child Probabilistic Plushies using our new mutation method for a majority of the evolutionary

process. We specified a standard deviation of 0.2 our the amount of perturbation we perform on each of a

Probabilistic Plushy genome’s probabilities.

On a similar note, we specified that the maximum initial genome length for a Probabilistic Plushy was

100. Our results suggest that these genomes may need to begin with a bigger size to prevent these genomes

from expressing extremely small sized Non-Probabilistic Plushies. We briefly explored alternative values

for each of these hyperparameters but did not know if the hyperparameters we chose were close to opti-

mal. As a result, the lack of hyperparameter tuning could have hindered Propeller’s performance on the

benchmark suite when using Probabilistic Plushies.

As such, one future work would be finding the optimal values for these parameters that help Propeller

to increase its success rate on GP problems when using Probabilistic Plushy genomes as the candidate

solutions. A possible experiment would be to create a set of probabilistic run parameters with different

numbers for a specific parameter while keeping all other parameters fixed. We could then perform 100

independent Propeller runs on a benchmark suite using each probabilistic setting and analyze the GP sys-

tem’s number of successes on each benchmark problem.

4.3 Benchmark Problems

Another possible limitation was the benchmark problems we used in our experimentation, as our bench-

mark suite only consisted of floating-point symbolic regression problems. Although our experiments with

these problems provided more information about Propeller’s performance with Probabilistic Plushies, the

lack of GP problems from other domains prevents us from further analyzing the solving capabilities of

Probabilistic Plushies. Additionally, our limited set of problems hinders us in identifying ones that Pro-

peller struggles to solve with Non-Probabilistic Plushies.

One future work would be experimenting with Probabilistic Plushies on problems that utilize real-

world data, as these problems are challenging and important for many applications. It may be that using

44

Probabilistic Plushies could help Propeller solve such problems. A possible experimental setup could be

creating new float regression problems using data sets from publicly available repositories. This extension

could help continue our investigation of Probabilistic Plushies and their impact on Propeller’s success rate

on other GP problems.

45

Chapter 5

Conclusions

This thesis presents the Probabilistic Plushy, a probabilistic genome representation of programs that can

express a random set of instructions to produce Non-Probabilistic Plushy genomes. Probabilistic Plushies

allow for the implementation of genetic operators that make small changes to a Probabilistic Plushy’s

probabilities. As a result of these genetic operators, new Probabilistic Plushy can inherit the behaviors from

their parent Probabilistic Plushy. From our preliminary experimentation, Probabilistic Plushy genomes

can help improve Propeller’s performance on some float regression problems and produce similar success

rates to GP runs using Non-Probabilistic Plushies. When experimenting with different genetic sources, we

found that Propeller has better success rates using Probabilistic Plushies than Non-Probabilistic Plushies

when using crossover, UMAD, and biased-perturbation mutation. We also discuss the limitations of our

experiments and suggest future work built on this project that can contribute to exploring more of the

solving capabilities of probabilistic genomes.

46

Chapter 6

Appendix: Genetic Sources

6.1 Preliminary Experimentation

(d e f i n s t r u c t i o n s

(l i s t : i n1

: f l o a t a d d

: f l o a t s u b t r a c t

: f l o a t m u l t

: f l o a t q u o t

: f l o a t e q

: exec dup

: e x e c i f

` c l o s e

0 . 0

1 . 0))

6.2 Genetic Sources

6.2.1 Hand-tuned

47

(d e f hand− tuned

(l i s t : i n1

: f l o a t a d d

: f l o a t s u b t r a c t

: f l o a t m u l t

: f l o a t q u o t

: f l o a t d u p

0 . 0

1 . 0))

6.2.2 Kitchen-Sink

(d e f k i t chen − s i nk

(l i s t 0 . 0

1 . 0

: p r i n t n ew l i n e

: i n t e g e r s u b t r a c t

: i n t e g e r i n c

: b o o l e a n s t a c k d e p t h

: v e c t o r i n t e g e r e q

: boo l ean pop

: s t r i n g f r om c h a r

: v e c t o r s t r i n g s h o v e

: v e c t o r f l o a t y a n k d u p

: exec yank dup

: v e c t o r i n t e g e r s h o v e

: i n t e g e r y ank dup

: s t r i n g f l u s h

48

: boo lean swap

: exe c shove

: v e c t o r b oo l e an y ank

: exec y

: boo l ean yank

: i n t e g e r e q

: s t r i n g b u t l a s t

: s t r i n g c o n j c h a r

: v e c t o r f l o a t l a s t

: s t r i n g s u b s t r

: i n t e g e r mu l t

: i n1

: v e c t o r s t r i n g d u p t im e s

: v e c t o r i n t e g e r d u p

: b oo l e an o r

: boo lean empty

: v e c t o r s t r i n g p r i n t

: v e c t o r boo l e an swap

: ch a r dup i t ems

: v e c t o r f l o a t p u s h a l l

: c h a r i s wh i t e s p a c e

: v e c t o r s t r i n g r e p l a c e f i r s t

: s t r i n g f i r s t

: v e c t o r b o o l e a n f i r s t

: s t r i n g i n d e x o f c h a r

: v e c t o r f l o a t r e p l a c e

: i n t e g e r f r om s t r i n g

: c h a r f r om i n t e g e r

49

: v e c t o r i n t e g e r emp t y v e c t o r

: v e c t o r s t r i n g e q

: e x e c dup i t ems

: v e c t o r f l o a t b u t l a s t

: b oo l e an dup i t ems

: exec empty

: s t r i n g s h o v e

: v e c t o r b o o l e a n p u s h a l l

: e x e c r o t

: v e c t o r s t r i n g c o n c a t

: v e c t o r f l o a t i n d e x o f

: v e c t o r s t r i n g s u b v e c

: v e c t o r i n t e g e r sw ap

: char pop

: exec dup

: v e c t o r i n t e g e r b u t l a s t

: v e c t o r f l o a t r e s t

: v e c t o r s t r i n g f l u s h

: b o o l e a n f r om f l o a t

: f l o a t s i n

: b o o l e a n f l u s h

: c h a r i s d i g i t

: f l o a t l t e

: v e c t o r i n t e g e r emp t y

: c o d e p r i n t

: v e c t o r s t r i n g s t a c k d e p t h

: s t r i n g r e v e r s e

: exec k

50

: v e c t o r i n t e g e r y a n k

: f l o a t f r om i n t e g e r

: c h a r r o t

: v e c t o r i n t e g e r d u p t im e s

: c h a r p r i n t

: v e c t o r i n t e g e r s t a c k d e p t h

: v e c t o r b o o l e a n c o n c a t

: b oo l e an xo r

: i n t e g e r g t e

: v e c t o r f l o a t s h o v e

: v e c t o r i n t e g e r t a k e

: b oo l e an dup t ime s

: s t r i n g r e p l a c e f i r s t

: v e c t o r i n t e g e r y a n k dup

: boo l e an shove

: f l o a t l t

: v e c t o r s t r i n g d u p

: v e c t o r s t r i n g o c c u r r e n c e s o f

: v e c t o r i n t e g e r r e p l a c e

: v e c t o r f l o a t r e v e r s e

: f l o a t mod

: v e c t o r f l o a t s u b v e c

: s t r i n g l a s t

: b o o l e a n p r i n t

: b o o l e a n r o t

: v e c t o r s t r i n g r e s t

: i n t e g e r q u o t

: v e c t o r f l o a t r emo v e

51

: i n t e g e r f r om f l o a t

: i n t e g e r l t e

: v e c t o r i n t e g e r r o t

: i n t ege r mod

: s t r i n g c o n c a t

: v e c t o r s t r i n g b u t l a s t

: v e c t o r f l o a t emp t y v e c t o r

: v e c t o r s t r i n g y a n k d u p

: i n t e g e r r o t

: f l o a t y a nk dup

: v e c t o r s t r i n g r o t

: v e c t o r s t r i n g t a k e

: v e c t o r f l o a t d u p i t em s

: i n t e g e r a d d

: v e c t o r i n t e g e r o c c u r r e n c e s o f

: i n t e g e r s h o v e

: s t r i n g d u p t im e s

: char swap

: i n t ege r max

: v e c t o r i n t e g e r f l u s h

: v e c t o r i n t e g e r s u b v e c

: v e c t o r b o o l e a n i n d e x o f

: v e c t o r f l o a t p o p

: c h a r dup t ime s

: v e c t o r s t r i n g r emov e

: v e c t o r i n t e g e r c o n t a i n s

: code append

: v e c t o r f l o a t e q

52

: v e c t o r i n t e g e r c o n j

: s t r i n g e q

: i n t e g e r s t a c k d e p t h

: f l o a t max

: v e c t o r b o o l e a n s e t

: v e c t o r f l o a t c o n j

: f l o a t d u p i t em s

: s t r i n g t a k e

: c h a r s t a c k d e p t h

: v e c t o r i n t e g e r r e p l a c e f i r s t

: f l o a t s t a c k d e p t h

: i n t e g e r d u p t im e s

: f l o a t g t

: boo l ean dup

: f l o a t f r om b o o l e a n

: v e c t o r f l o a t r e p l a c e f i r s t

: v e c t o r b o o l e a n c o n j

: e x e c dup t ime s

: v e c t o r b oo l e an dup

: v e c t o r i n t e g e r i n d e x o f

: v e c t o r s t r i n g sw a p

: ex e c eq

: s t r i n g emp t y s t r i n g

: s t r i n g swap

: i n t e g e r y ank

: e x e c wh i l e

: f l o a t emp t y

: v e c t o r b o o l e a n p r i n t

53

: i n t e g e r m in

: exec swap

: v e c t o r s t r i n g y a n k

: s t r i n g s t a c k d e p t h

: s t r i n g r e p l a c e c h a r

: c h a r a l l f r om s t r i n g

: v e c t o r i n t e g e r r e s t

: v e c t o r b o o l e a n l e n g t h

: char yank

: v e c t o r f l o a t emp t y

: s t r i n g p o p

: f l o a t e q

: i n t e g e r d u p i t em s

: v e c t o r boo l e an emp ty

: v e c t o r s t r i n g l a s t

: s t r i n g n t h

: v e c t o r s t r i n g p o p

: v e c t o r i n t e g e r n t h

: v e c t o r i n t e g e r d u p i t em s

: e x e c i f

: cha r shove

: v e c t o r boo l e an r emove

: v e c t o r i n t e g e r r emov e

: b o o l e a n i n v e r t f i r s t t h e n a n d

: s t r i n g p r i n t

: i n t e g e r f r om boo l e a n

: char yank dup

: v e c t o r s t r i n g f i r s t

54

: b o o l e a n f r om i n t e g e r

: s t r i n g s e t c h a r

: v e c t o r i n t e g e r l a s t

: c h a r i s l e t t e r

: v e c t o r i n t e g e r c o n c a t

: i n t e g e r p r i n t

: boo l e an eq

: f l o a t g t e

: s t r i n g o c c u r e n c e s o f c h a r

: s t r i n g r e p l a c e f i r s t c h a r

: f l o a t p r i n t

: i n t e g e r f l u s h

: f l o a t s h o v e

: s t r i n g r e p l a c e

: char dup

: f l o a t p o p

: cha r eq

: v e c t o r f l o a t n t h

: v e c t o r s t r i n g c o n j

: i n t e g e r g t

: v e c t o r f l o a t d u p t i m e s

: f l o a t s u b t r a c t

: v e c t o r i n t e g e r l e n g t h

: v e c t o r f l o a t s e t

: v e c t o r s t r i n g i n d e x o f

: v e c t o r b o o l e a n r e s t

: v e c t o r b o o l e a n s h o v e

: f l o a t m i n

55

: b oo l e an no t

: f l o a t m u l t

: f l o a t f r om s t r i n g

: v e c t o r b o o l e a n dup i t em s

: v e c t o r i n t e g e r p o p

: v e c t o r b o o l e a n l a s t

: f l o a t d e c

: v e c t o r f l o a t c o n t a i n s

: s t r i n g emp ty

: char empty

: exec pop

: v e c t o r i n t e g e r s e t

: v e c t o r f l o a t r o t

: s t r i n g y ank dup

: s t r i n g r emov e ch a r

: v e c t o r s t r i n g r e p l a c e

: v e c t o r f l o a t f i r s t

: c h a r f l u s h

: v e c t o r f l o a t o c c u r r e n c e s o f

: v e c t o r s t r i n g emp t y v e c t o r

: f l o a t a d d

: e x e c s

: f l o a t d u p

: v e c t o r s t r i n g n t h

: v e c t o r i n t e g e r r e v e r s e

: v e c t o r i n t e g e r p r i n t

: c h a r f r om f l o a t

: i n t e g e r l t

56

: v e c t o r b o o l e a n e q

: v e c t o r b o o l e a n dup t ime s

: s t r i n g c o n t a i n s c h a r

: s t r i n g y ank

: v e c t o r b o o l e a n r o t

: f l o a t swap

: v e c t o r s t r i n g p u s h a l l

: v e c t o r s t r i n g s e t

: v e c t o r b o o l e a n f l u s h

: v e c t o r b o o l e a n s t a c k d e p t h

: v e c t o r i n t e g e r p u s h a l l

: v e c t o r b o o l e a n r e v e r s e

: i n t e g e r swap

: s t r i n g s p l i t

: v e c t o r b o o l e a n c o n t a i n s

: s t r i n g f r om bo o l e a n

: v e c t o r f l o a t d u p

: v e c t o r b o o l e a n r e p l a c e

: v e c t o r s t r i n g d u p i t em s

: i n t e g e r d up

: v e c t o r b o o l e a n n t h

: v e c t o r s t r i n g l e n g t h

: s t r i n g r e s t

: f l o a t t a n

: s t r i n g r o t

: exec yank

: s t r i n g p a r s e t o c h a r s

: i n t e g e r p o p

57

: i n t e g e r emp ty

: v e c t o r f l o a t f l u s h

: v e c t o r f l o a t y a n k

: e x e c p r i n t

: f l o a t d u p t im e s

: f l o a t i n c

: v e c t o r f l o a t l e n g t h

: i n t e g e r d e c

: s t r i n g c o n t a i n s

: v e c t o r f l o a t c o n c a t

: v e c t o r f l o a t s t a c k d e p t h

: v e c t o r i n t e g e r f i r s t

: v e c t o r f l o a t p r i n t

: f l o a t r o t

: v e c t o r s t r i n g c o n t a i n s

: v e c t o r b o o l e a n o c c u r r e n c e s o f

: s t r i n g d u p i t em s

: v e c t o r s t r i n g r e v e r s e

: e x e c s t a c k d e p t h

: f l o a t f l u s h

: boo l ean and

: v e c t o r b o o l e a n b u t l a s t

: s t r i n g l e n g t h

: f l o a t c o s

: s t r i n g f r om i n t e g e r

: e x e c f l u s h

: v e c t o r s t r i n g emp t y

: exec when

58

: v e c t o r f l o a t sw a p

: v e c t o r b oo l e an pop

: f l o a t q u o t

: v e c t o r b o o l e a n t a k e

: v e c t o r f l o a t t a k e

: b o o l e a n i n v e r t s e c o n d t h e n an d

: v e c t o r b o o l e a n s u b v e c

: f l o a t y a n k

: v e c t o r b oo l e a n emp t yv e c t o r

: v e c t o r b o o l e a n r e p l a c e f i r s t

: s t r i n g f r om f l o a t

: v e c t o r boo l e an yank dup

: s t r i n g d up

: boo lean yank dup))

59

Bibliography

[1] William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for regression. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference 2016. ACM, jul 2016.

[2] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Program synthesis using uniform muta-

tion by addition and deletion. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO ’18, page 1127–1134, New York, NY, USA, 2018. Association for Computing Machinery.

[3] Thomas Helmuth, Edward Pantridge, Grace Woolson, and Lee Spector. Genetic Source Sensitivity and

Transfer Learning in Genetic Programming. volume ALIFE 2020: The 2020 Conference on Artificial

Life of ALIFE 2022: The 2022 Conference on Artificial Life, pages 303–311, 07 2020.

[4] William B. Langdon, Riccardo Poli, Nicholas F. McPhee, and John R. Koza. Genetic Programming: An

Introduction and Tutorial, with a Survey of Techniques and Applications, pages 927–1028. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

[5] Jessica Megane, Nuno Lourenco, and Penousal Machado. Probabilistic grammatical evolution. In

Ting Hu, Nuno Lourenco, and Eric Medvet, editors, EuroGP 2021: Proceedings of the 24th European

Conference on Genetic Programming, volume 12691 of LNCS, pages 198–213, Virtual Event, 7-9 April

2021. Springer Verlag.

[6] Edward Pantridge, Thomas Helmuth, and Lee Spector. Comparison of Linear Genome Representations

for Software Synthesis, pages 255–274. Springer International Publishing, Cham, 2020.

[7] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolutionary

Computation, 5(2):123–141, 1997.

60

	Introduction
	Overview
	What is Genetic Programming?
	Automatic Programming
	How Genetic Programming Works
	Genetic Representation of Computer Programs
	Setup and Problem Specification

	Probabilistic Genomes for Genetic Programming
	Motivation
	Probabilistic Genomes
	Error Evaluation
	Variation Methods

	Research Objectives
	Related Works
	Probabilistic Incremental Program Evolution: Stochastic Search Through Program Space
	Probabilistic Grammatical Evolution

	Design and Implementations
	Software Implementation
	Introduction to Propeller
	The Push Programming Language
	Plushy Genomes

	Genetic Operators
	Selection
	Variation

	Probabilistic Plushy genomes
	Multiple Evaluations
	New Genetic Operators
	UMAD
	Biased-perturbation mutation

	Data Collection
	Benchmark Problems
	Experimental Design

	Results
	Preliminary Experimentation
	Genetic Sources
	Hand-tuned
	Kitchen-Sink

	Limitations and Future Work
	Crossover
	Hyperparameter Tuning
	Benchmark Problems

	Conclusions
	Appendix: Genetic Sources
	Preliminary Experimentation
	Genetic Sources
	Hand-tuned
	Kitchen-Sink

